Additive Models with Sparse Convexity Patterns

YJ Choe

The University of Chicago

yjchoe@uchicago.edu

August 21, 2014
This talk is based on an ongoing work in Professor John Lafferty’s group, which includes Sabyasachi Chatterjee, YJ Choe (the presenter), Max Cytrynbaum, Wei Hu, Yuxue Qi, and Min Xu.
Overview

1. Introduction
2. MISOCP Formulation
3. Lasso Formulation
4. Demo
Section 1

Introduction
Regression

Suppose we have data \((X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^p \times \mathbb{R}\), where
\[X_i = (X_{i1}, \ldots, X_{ip})^T \] for each \(i = 1, \ldots, n \).
We assume that this data comes from a true regression function \(m \)
with a Gaussian noise \(\epsilon_i \sim \mathcal{N}(0, \sigma^2) \):
\[Y_i = m(X_i) + \epsilon_i \]
for \(i = 1, \ldots, n \).
Least-Squares Fit

We are interested in finding the function that minimizes the **mean squared error (MSE)** within an assumed function space \(\mathcal{F} \):

\[
\hat{m} = \arg\min_{m \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - m(X_i))^2.
\]
Nonparametric Regression

Data: \((X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^p \times \mathbb{R}\)

Model: \(Y_i = m(X_i) + \varepsilon_i, \text{ where } \varepsilon_i \overset{IID}{\sim} \mathcal{N}(0, \sigma^2)\)

Goal: Minimize the MSE on \(\mathcal{F}\), i.e.

\[
\hat{m} = \arg\min_{m \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - m(X_i))^2
\]

Nonparametric? Weak assumptions on \(\mathcal{F}\), i.e. (much) larger \(\mathcal{F}\):

- smooth functions
- convex functions
Suppose $p > 1$. We assume that the true regression function m is additive:

$$m(x) = \sum_{j=1}^{p} f_j(x_j)$$

for any $x = (x_1, \ldots, x_p)^T \in \mathbb{R}^p$. We call each univariate function f_j components for $j = 1, \ldots, p$.

Additive Models with Sparse Convexity Patterns
Why Additive Models?

- Nonparametric
- Tractable i.e. easier to fit
- Interpretable

...(sometimes) even when the true model is not additive!
Interpretability (Generalized Additive Model, Logistic)

(Data: pima from [Faraway, 2014] in R package faraway)
The Backfitting Algorithm

Algorithm 1 The Backfitting Algorithm

Given \(\{(X_i, Y_i)\}_{i=1}^n \subseteq \mathbb{R}^p \times \mathbb{R} \), where \(\sum_{i=1}^n Y_i = 0 \)
Initialize \(\hat{f}_j \equiv 0 \) for each \(j = 1, \ldots, p \)
repeat
 for \(j = 1, \ldots, p \) (or in random order) do
 \(R_i = Y_i - \sum_{k \neq j} \hat{f}_k(X_{ik}) \) for \(i = 1, \ldots, n \) \# Residuals
 \(\hat{f}_j = fit.1d(\{(X_{ij}, R_i)\}_{i=1}^n) \) \# 1-D Regression on Residuals
 \(\hat{f}_j = \hat{f}_j - \text{mean}(\{f_j(X_{ij})\}_{i=1}^n) \) \# Mean Centering
 end for
until change in fitted values is small
Sparsity

With high-dimensional models, we usually hope that the fit is **sparse**, i.e. we want it to be “effectively” a lower-dimensional model which we can describe with only a few parameters/components.
Regularization

For now, assume the parametric linear regression model

\[Y = X\beta + \varepsilon. \]

Instead of the usual mean squared error, we minimize

\[\frac{1}{n} \| Y - X\beta \|^2_2 + \lambda J(\beta) \]

where \(J(\beta) \) is a penalty term, which is a function of the coefficient vector \(\beta \), and \(\lambda \) is some positive constant. This process is called regularized least-squares; the general technique of adding a penalty term to the objective is called regularization.
ℓ^1-Regularization a.k.a. the Lasso

In particular, if we have the ℓ^1-penalty $J(\beta) = \|\beta\|_1 = \sum_{j=1}^{p} |\beta_j|$, we call this the Lasso [Tibshirani, 1996]. The objective becomes

$$\frac{1}{n} \| Y - X \beta \|_2^2 + \lambda \| \beta \|_1$$

Note: The Lasso is a quadratic program (QP).
Lasso Induces Sparsity!

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \leq t$ and $\beta_1^2 + \beta_2^2 \leq t^2$, respectively, while the red ellipses are the contours of the least squares error function.

[Hastie et al., 2009]
Sparse Additive Models (SpAM) [Ravikumar et al., 2009]

In terms of additive models, this would mean that we want a majority of components to be identically zero.

Sparsity pattern: whether each component is sparse.
Shape Constraints

We assume that functions in our model have certain shapes, e.g.

- monotonicity
- convexity, log-convexity, and SOS-convexity

In general, models with “nice” shape constraints come with more tractable estimation techniques that still works for a variety of examples.
Convexity

A function f on a convex set $C \subseteq \mathbb{R}^p$ is convex if

$$
f((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)f(x_1) + \lambda f(x_2).
$$

for all $x_1, x_2 \in C$ and $\lambda \in [0, 1]$. f is concave if $-f$ is convex.

Convex/concave functions naturally appear in various cases. For example, a utility function with diminishing returns is concave [Qi, Xu, and Lafferty, to appear].
The Problem

Here, we attempt to combine additive models with shape constraints!

Specifically, we consider a regression model in which the true function is additive and each component is either convex, concave, or identically zero.
Convexity Pattern

The model:

\[Y_i = \sum_{j=1}^{p} [f_j(X_{ij}) + g_j(X_{ij})] + \varepsilon_i \]

where, for each \(j = 1, \ldots, p \), \(f_j \) is convex, \(g_j \) is concave, and at most one of \(f_j \) and \(g_j \) is nonzero.

That is, each component is either convex, concave, or identically zero. We call this ternary pattern a **sparse convexity pattern**, or simply, a **convexity pattern**.
Example: 2 Components, 1 Convex & 1 Concave

Component 1

Component 2

Data
True component
Convex component
Concave component
Additive fit
Example: 5 Components with 1 Sparse Component
Example: 7 Components with 5 Sparse Components
Example: 5 Components with 1 Sparse Component (2)
Section 2

MISOCP Formulation
Convex Regression

Suppose we have a p-variate regression problem in which the true function is assumed to be convex. This is:

$$\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - m(X_i))^2$$

s.t. \quad m \text{ is convex.}
Convex Regression as a QP

It can be shown that this problem is, in fact, equivalent to the following finite-dimensional quadratic program (QP):

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_i)^2 \\
\text{s.t.} & \quad f_i' \geq f_i + \beta_i^T (X_i' - X_i) \\
& \quad i, i' = 1, \ldots, n.
\end{align*}
\]

Here, \(f = (f_1, \ldots, f_n)^T \) is a vector of fitted values and \(\beta_1, \ldots, \beta_n \) are the subgradients at each point.
\[
\begin{align*}
\text{minimize} \quad & f, \beta \\
\text{s.t.} \quad & f_i' \geq f_i + \beta_i^T(X_i' - X_i) \\
& i, i' = 1, \ldots, n.
\end{align*}
\]

Why? The solution can be viewed as a piecewise-linear convex function whose slopes are precisely the subgradient β_i's:

\[
\hat{m}(x) = \max_{i=1,\ldots,n} \left(f_i + \beta_i^T(x - X_i) \right).
\]

It is important to note that \hat{m} interpolates \{(X_i, f_i)\}$_{i=1}^n$.

(For a proof, see [Boyd and Vandenberghe, 2009].)
The Univariate Case

In the case where the true convex function is univariate, we can do even better.

Note that this is the case with our model because each component function is univariate.
In the univariate case, sort the points. Then,

\[\text{convexity } \iff \text{subgradients are nondecreasing!} \]

We only need \(n - 1 \) linear inequalities, instead of \(\binom{n}{2} \):

\[\beta_i \leq \beta_{i+1} \]

for \(i = 1, \ldots, n \).
Thus, the 1-D convex regression corresponds to the following QP:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_i)^2 \\
\text{s.t.} & \quad f_{i+1} = f_i + \beta_i (X_{i+1} - X_i) \\
& \quad \beta_i \leq \beta_{i+1} \\
& \quad \text{for } i = 1, \ldots, n - 1.
\end{align*}
\]

where the \(X_i\)'s are sorted, i.e. \(X_i < X_{i+1}\).
Additive Convex Regression

Now, we assume an additive model whose components are convex. Then, assuming \(\sum_{i=1}^{n} Y_i = 0 \), we obtain the analogous QP:

\[
\begin{align*}
\text{minimize} \quad & \frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} f_{ij})^2 \\
\text{s.t.} \quad & f_{(i+1)j,j} = f_{ij,j} + \beta_{(i)j,j}(X_{(i+1)j,j} - X_{ij,j}) \\
& \beta_{ij,j} \leq \beta_{(i+1)j,j} \\
& \text{for } i = 1, \ldots, n - 1 \text{ and } j = 1, \ldots, p \\
& \sum_{i=1}^{n} f_{ij} = 0 \quad \text{for } j = 1, \ldots, p
\end{align*}
\]

where \((i)_j\) denotes the \(i\)th rank statistic with respect to the values of the \(j\)th components of \(X_1, \ldots, X_n\).
Identifiability Constraints

\[\sum_{i=1}^{n} f_{ij} = 0 \quad \text{for } j = 1, \ldots, p. \]

These are often called *identifiability constraints* of additive models.

Given that the outputs \(Y_1, \ldots, Y_n \) are centered, it is necessary to center the fitted values from each component, since otherwise we can add and subtract the same amount to different components and get the same solution.
The Convexity Pattern Problem

Recall that our regression model is

$$Y_i = \sum_{j=1}^{p} [f_j(X_{ij}) + g_j(X_{ij})] + \varepsilon_i$$

for $i = 1, \ldots, n$, where for each $j = 1, \ldots, p$, f_j is convex and g_j is concave such that at most one of f_j and g_j is nonzero.
Good News

The convexity/concavity constraints as well as identifiability constraints are analogous to those in additive convex regression.

For \(i = 1, \ldots, n - 1 \) and \(j = 1, \ldots, p \):

\[
\begin{align*}
 f(i+1)_{j,j} &= f(i)_{j,j} + \beta(i)_{j,j}(X(i+1)_{j,j} - X(i)_{j,j}) \\
 g(i+1)_{j,j} &= g(i)_{j,j} + \gamma(i)_{j,j}(X(i+1)_{j,j} - X(i)_{j,j}) \\
 \beta(i)_{j,j} &\leq \beta(i+1)_{j,j} \\
 \gamma(i)_{j,j} &\geq \gamma(i+1)_{j,j}
\end{align*}
\]

For \(j = 1, \ldots, p \):

\[
\begin{align*}
 \sum_{i=1}^{n} f_{ij} &= 0; \quad \sum_{i=1}^{n} g_{ij} = 0.
\end{align*}
\]
Not-So-Good News

“...such that at most one of f_j and g_j is nonzero.”
Integer Variables

We introduce logical (0-1) variables to describe the constraint. For $j = 1, \ldots, p$ and some constant $B > 0$,

\[
\|f_j\|_2 = \sqrt{\sum_{i=1}^{n} f_{ij}^2} \leq z_j B
\]

\[
\|g_j\|_2 = \sqrt{\sum_{i=1}^{n} g_{ij}^2} \leq w_j B
\]

\[z_j + w_j \leq 1\]

\[z_j, w_j \in \{0, 1\}.\]

where $f_j = (f_{1j}, \ldots, f_{nj})^T$ and $g_j = (g_{1j}, \ldots, g_{nj})^T$. (cf. SpAM)
For each $j = 1, \ldots, p$, $z_j + w_j$ is 1 if the jth component is nonzero and 0 if it is zero. But with the previous construction, $z_j + w_j$ will always tend to 1. Thus, we add a penalty term with some regularization parameter $\lambda > 0$ to the objective:

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p}(f_{ij} + g_{ij}))^2 + \lambda \sum_{j=1}^{p}(z_j + w_j).$$

Note that the penalty term is exactly the number of nonzero components. It essentially corresponds to a ℓ^0-regularization term, which is not a convex problem.
Towards a Convex Program: Replacing the Objective

We are almost there! One more trick will turn this program into a 0-1 mixed-integer second-order cone program (MISOCP).
We replace

$$\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} (f_{ij} + g_{ij}))^2 + \lambda \sum_{j=1}^{p} (z_j + w_j)$$

by

$$\text{minimize} \quad \frac{t}{n} + \lambda \sum_{j=1}^{p} (z_j + w_j)$$

s.t. \quad \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} (f_{ij} + g_{ij}))^2 \leq t$$

Now, the objective is linear and the inequality is a second-order cone.
The MISOCP Formulation

\[\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p} \sum_{j=1}^{p} (f_{ij} + g_{ij})^2 \leq t \]

\[t + \lambda \sum_{j=1}^{p} (z_j + w_j) \]

s.t.

\[\sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} (f_{ij} + g_{ij}))^2 \leq t \]

\[f_{(i+1)j} = f_{ij} + \beta_{ij}(X_{(i+1)j} - X_{ij}) \]

\[g_{(i+1)j} = g_{ij} + \gamma_{ij}(X_{(i+1)j} - X_{ij}) \]

\[\beta_{ij} \leq \beta_{(i+1)j} \]

\[\gamma_{ij} \geq \gamma_{(i+1)j} \]

for \(i = 1, \ldots, n - 1 \) and \(j = 1, \ldots, p \)

\[\sum_{i=1}^{n} f_{ij} = 0; \quad \sum_{i=1}^{n} g_{ij} = 0 \]

\[\|f_j\|_2 \leq z_j B; \quad \|g_j\|_2 \leq w_j B \]

\[z_j + w_j \leq 1 \]

\(z_j, w_j \in \{0, 1\} \)

for \(j = 1, \ldots, p \)
Mixed-Integer Convex Programming

A convex program in which some of the program variables are integers.

Works from [Gomory, 1958], [Sherali and Adams, 1990], [Lovász and Schrijver, 1991], [Balas et al., 1993],

Our focus is on 0-1 MISOCPs. Stubbs and Mehrotra (1999) generalized the works in [Balas et al., 1993] on branch-and-cut for general 0-1 mixed-integer convex programming. Drewes (2009) analyzed the results in the case of second-order cone programming.
Mixed-Integer Second-Order Cone Program (MISOCP)

The general form of a 0-1 mixed-integer second-order cone program (MISOCP) can be stated as the following:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad \| P_i x + q_i \|_2 \leq r_i^T x + s_i \quad \forall \ i = 1, \ldots, m \\
& \quad x_j \in \{0, 1\} \quad \forall \ j \in J \subseteq [l]
\end{align*}
\]

where \(l \) is the total number of program variables and \([l] = \{1, \ldots, l\}\).
Since we have efficient solvers for convex programs, perhaps the most natural way is to relax the integer variables and solve the relaxed program for an approximate optimum. That is, we replace the integer constraint $x_j \in \{0, 1\}$ with

$$x_j \in [0, 1]$$

for $j \in J$. The relaxed problem is then convex.
Branch-and-Bound

Let $x^* = (x_1^*, \ldots, x_l)^T$ be an optimal solution to the relaxed problem. For any $j \in J$, if $x_j^* \notin \{0, 1\}$, which is not what we want, we generate two subproblems, one with $x_j = 0$ and the other with $x_j = 1$.

We can repeatedly “branch out” to get a binary tree with at most $2^{|J|}$ leaves, corresponding to the $2^{|J|}$ different configurations of the integer variables.
Cuts

We want the tree search to be more efficient by *pruning* the tree!

If x^* is a non-integral solution to some relaxation, then we try to find a linear hyperplane that separates x^* from *all* of the feasible integer points. Such hyperplane is called a **cut**.

A cut need not exist in every case; we need a systematic framework in which we can *generate* cuts.
Example: A Cut

[Ceria]
Branch-and-Cut

Combines the branch-and-bound algorithm with additional pruning by cuts!
Algorithm 2 Branch-and-Cut (with Most Infeasible Branching)

Initialize $x^* \leftarrow \text{NULL}$; $OPT \leftarrow \infty$; $\mathcal{P} \leftarrow \{\text{The MISOCP problem}\}$

while \mathcal{P} not empty do
 Remove a problem P from \mathcal{P}
 if relaxation of P is infeasible then
 Continue to next iteration of the loop
 end if
 Solve the relaxed version of P and obtain (x_P, t_P)
 if $x_P \in \{0, 1\}^{|J|}$ and $t_P < OPT$ then
 $x^* \leftarrow x_P$; $OPT \leftarrow t_P$
 else if $t_P < OPT$ then
 if there is a cut for x_P then
 Add the cut to P and insert P to \mathcal{P}
 Continue to the next iteration of the loop
 else
 Find $j = \text{argmin}_{j \in J} |(x_P)_j - 0.5|$
 Define $P_0 \leftarrow (P \text{ with } x_j = 0)$; $P_1 \leftarrow (P \text{ with } x_j = 1)$
 Add P_0 and P_1 to \mathcal{P}
 end if
 end if
end while
return x^* and OPT
Example: Branch-and-Cut with MILP [Mitchell, 2002]

\[
\begin{align*}
\text{minimize} & \quad -6x_1 - 5x_2 \\
\text{s.t.} & \quad 3x_1 + x_2 \leq 11 \\
& \quad -x_1 + 2x_2 \leq 5 \\
& \quad x_1, x_2 \geq 0 \\
& \quad x_1, x_2 \in \mathbb{Z}
\end{align*}
\]
Additive Models with Sparse Convexity Patterns

YJ Choe
Introduction

MISOCP Formulation

Lasso Formulation

Demo

Convex Regression

Additive Convex Regression

Convexity Pattern Problem as a MISOCP

Mixed-Integer Convex Programming

The Backfitting Version

Results and Limitations

Problem \((Eg0)\).
Soln. to relaxation:
\((2\frac{3}{7}, 3\frac{5}{7})\),
\(z = -33\frac{1}{7}\)

Branch on
\(x_1\)

\(x_1 \geq 3\)

Problem \((Eg1)\).
Soln. to relaxation:
\((3, 2)\),
\(z = -28\)

\(x_1 \leq 2\)

Problem \((Eg2)\).
Soln. to relaxation:
\((2, 3.5)\),
\(z = -29.5\)

Add cut:
\(2x_1 + x_2 \leq 7\)

Problem \((Eg3)\).
Soln. to relaxation:
\((1.8, 3.4)\),
\(z = -27.8\)

[Mitchell, 2002]

YJ Choe Additive Models with Sparse Convexity Patterns
Lift-and-Project Cuts

As with other mixed-integer convex programs, for MISOCPs there is a **lift-and-project** construction of a hierarchy of sets that allows one to *generate* cuts [Drewes, 2009].
The Backfitting Version

Algorithm 3 The Convexity Pattern Backfitting Algorithm

Given \(\{(X_i, Y_i)\}_{i=1}^{n} \subseteq \mathbb{R}^p \times \mathbb{R}\), where \(\sum_{i=1}^{n} Y_i = 0\)

Initialize \(\hat{f}_j \equiv 0\) for each \(j = 1, \ldots, p\)

repeat
 for \(j = 1, \ldots, p\) (or in random order) do
 \(R_i = Y_i - \sum_{k \neq j} \hat{f}_k(X_{ik})\) for \(i = 1, \ldots, n\)
 \(\hat{f}_j = \text{convexity.pattern.1d}((X_{ij}, R_i)_{i=1}^{n})\) # Output is centered
 end for
until change in fitted values is small
Example: Full MISOCP
Example: MISOCP Backfitting Version

Data
True component
Convex component
Concave component
Additive fit
Example: MISOCP Backfitting Version

- Component 1
- Component 2
- Component 3
- Component 4
- Component 5
- Component 6
- Component 7
- Component 8

- Data
- True component
- Convex component
- Concave component
- Additive fit
Limitations of the MISOCP Formulation

- It’s still an NP-hard problem, and it does not scale.
- The full MISOCP: for just $n = 500$ and $p = 8$, there are $\sim 20{,}000$ constraints. In practice (using Rmosek), this amounts to $\sim 2{,}000$ branches with ~ 200 cuts. On a laptop, it takes around 5 minutes.
- The backfitting version: for $p = 20$ or larger, it rarely converges. Also, difficult to analyze theoretically.
- Close/identical points: $\beta_i = \frac{f_{i+1} - f_i}{X_{i+1} - X_i}$
Section 3

Lasso Formulation
The Lasso

$$\frac{1}{n} \| Y - X \beta \|_2^2 + \lambda \| \beta \|_1$$

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions \(|\beta_1| + |\beta_2| \leq t\) and \(\beta_1^2 + \beta_2^2 \leq t^2\), respectively, while the red ellipses are the contours of the least squares error function.

[Hastie et al., 2009]
FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_\lambda |\hat{\beta}_\lambda|$. A vertical line is drawn at $s = 0.36$, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.
The Isotonic Pattern Problem

Also known as: the *monotonicity* pattern problem.

In the 1-D, assuming sorted data,

\[
\text{minimize}_{f,g} \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - (f_i + g_i))^2 + \lambda \{\text{penalty}\}
\]

s.t. \quad f_i \leq f_{i+1}
\[
\quad g_i \geq g_{i+1}
\]

for \(i = 1, \ldots, n - 1 \)

\[
\sum_{i=1}^{n} f_i = 0; \quad \sum_{i=1}^{n} g_i = 0
\]

at most one of \(f \) and \(g \) is nonzero.
The Lasso Penalty for the 1-D Isotonic Pattern Problem

Define $\Delta f_i = f_{i+1} - f_i$ and $\Delta g_i = g_{i+1} - g_i$ for $i = 1, \ldots, n - 1$. Because the points are centered, we can recover the points exactly from just knowing the differences.

Define the penalty as

$$penalty = \left\| \begin{bmatrix} \Delta f \\ \Delta g \end{bmatrix} \right\|_1 = \| \Delta f \|_1 + \| \Delta g \|_1$$

$$= \sum_{i=1}^{n-1} (f_{i+1} - f_i) + \sum_{i=1}^{n} (g_i - g_{i+1})$$

$$= (f_n - f_1) + (g_1 - g_n).$$
The Magic

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - (f_i + g_i))^2 + \lambda \{(f_n - f_1) + (g_1 - g_n)\} \\
\text{s.t.} & \quad f_i \leq f_{i+1} \\
& \quad g_i \geq g_{i+1} \\
& \quad \text{for } i = 1, \ldots, n - 1 \\
& \quad \sum_{i=1}^{n} f_i = 0; \quad \sum_{i=1}^{n} g_i = 0
\end{align*}
\]

Claim: With this penalty, only the right pattern will emerge!
Example: The Isotonic Pattern Problem

(Code by Sabyasachi Chatterjee)
The p-Dimensional Isotonic Pattern Problem

\[
\begin{align*}
\text{minimize} \quad & f, g \\
& \frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} (f_{ij} + g_{ij}))^2 \\
& + \lambda \sum_{j=1}^{p} \{ (f_{(n)j,j} - f_{(1)j,j}) + (g_{(1)j,j} - g_{(n)j,j}) \} \\
\text{subject to} \quad & f_{(i)j,j} \leq f_{(i+1)j,j} \\
& g_{(i)j,j} \geq g_{(i+1)j,j} \\
& \text{for } i = 1, \ldots, n - 1 \text{ and } j = 1, \ldots, p \\
& \sum_{i=1}^{n} f_{ij} = 0; \quad \sum_{i=1}^{n} g_{ij} = 0 \\
& \text{for } j = 1, \ldots, p.
\end{align*}
\]
Convexity Pattern Problem with ℓ^1-Regularization

Is there an analogous lasso formulation for convexity?

...almost.
A Second Look at the Convexity Pattern Problem

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} (f_{ij} + g_{ij}))^2 + \lambda \{\text{penalty}\} \\
\text{s.t.} & \quad f_{(i+1)j,j} = f_{ij,j} + \beta_{ij,j} (X_{(i+1)j,j} - X_{ij,j}) \\
& \quad g_{(i+1)j,j} = g_{ij,j} + \gamma_{ij,j} (X_{(i+1)j,j} - X_{ij,j}) \\
& \quad \beta_{ij,j} \leq \beta_{(i+1)j,j} \\
& \quad \gamma_{ij,j} \geq \gamma_{(i+1)j,j} \\
& \quad \text{for } i = 1, \ldots, n - 1 \text{ and } j = 1, \ldots, p \\
& \quad \ldots
\end{align*}
\]

Where can we induce sparsity?
The subgradients are monotone!
The Convexity Pattern Problem with ℓ^1-Regularization

$$\min_{f, g, \beta, \gamma} \frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} (f_{ij} + g_{ij}))^2$$

$$+ \lambda \sum_{j=1}^{p} \{ (\beta(n)_{j,j} - \beta(1)_{j,j}) + (\gamma(1)_{j,j} - \gamma(n)_{j,j}) \}$$

s.t.

$$f_{(i+1)j,j} = f_{ij,j} + \beta(i)_{j,j}(X_{(i+1)j,j} - X_{ij,j})$$

$$g_{(i+1)j,j} = g_{ij,j} + \gamma(i)_{j,j}(X_{(i+1)j,j} - X_{ij,j})$$

$$\beta(i)_{j,j} \leq \beta(i+1)_{j,j}$$

$$\gamma(i)_{j,j} \geq \gamma(i+1)_{j,j}$$

for $i = 1, \ldots, n - 1$ and $j = 1, \ldots, p$

$$\sum_{i=1}^{n} f_{ij} = 0; \quad \sum_{i=1}^{n} g_{ij} = 0 \quad \text{for } j = 1, \ldots, p.$$
The 1-D Version

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - (f_i + g_i))^2 + \lambda \{ (\beta_n - \beta_1) + (\gamma_1 - \gamma_n) \} \\
\text{s.t.} & \quad f_{i+1} = f_i + \beta_i (X_{i+1} - X_i) \\
& \quad g_{i+1} = g_i + \gamma_i (X_{i+1} - X_i) \\
& \quad \beta_i \leq \beta_{i+1} \\
& \quad \gamma_i \geq \gamma_{i+1} \\
& \quad \text{for } i = 1, \ldots, n - 1 \\
& \quad \sum_{i=1}^{n} f_i = 0; \quad \sum_{i=1}^{n} g_i = 0
\end{align*}
\]
Is it exactly the same?

One issue: the fitted values are centered, but the subgradients are not.

But it seems to work exactly as it should.
Lasso Example: 3 Components

Component 1

Component 2

Component 3

Data
True component
Convex component
Concave component
Additive fit
Lasso Example: 8 Components

Data
True component
Convex component
Concave component
Additive fit

Component 1

Component 2

Component 3

Component 4

Component 5

Component 6

Component 7

Component 8

YJ Choe
Additive Models with Sparse Convexity Patterns
ℓ^1-Regularization Example: $\lambda = 0.01$
\(\ell^1 \)-Regularization Example: \(\lambda = 0.02 \)
\(\ell^1 \)-Regularization Example: \(\lambda = 0.1 \)
ℓ^1-Regularization Example: $\lambda = 1.0$
Limitations

- Quality of fit: We may need to re-fit in 1-D (or backfitting) once we have the pattern.
- Global penalty: Less freedom on choice of smoothness for each component.
- Close/identical points: \(\beta_i = \frac{f_{i+1} - f_i}{X_{i+1} - X_i} \).
Section 4

Demo
Logistic Regression: Generalized Additive Models

(Data: pima from [Faraway, 2014] in R package faraway)
Logistic Regression: Convexity Pattern (Full MISOCOP)

- pregnant
- glucose
- diastolic
- triceps
- insulin
- bmi
- diabetes
- age

Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery
Logistic Regression: Convexity Pattern (Backfitting)

YJ Choe
Additive Models with Sparse Convexity Patterns
Logistic Regression: Convexity Pattern (Lasso)
Sparsity Pattern Recovery: Parametric Lasso

Fig. 1. (a) Plots of the success probability $\mathbb{P}[S_\pm(\hat{\beta}) = S_\pm(\beta^*)]$ of obtaining the correct signed support versus the sample size n for three different problem sizes p, in all cases with sparsity $k = \lfloor 0.40 p^{0.75} \rfloor$. (b) Same simulation results with success probability plotted versus the rescaled sample size $\theta(n, p, k) = n/[2k \log(p - k)]$. As predicted by Theorems 3 and 4, all the curves now lie on top of one another. See Section VII for further simulation results.

[Wainwright, 2009]
Convexity Pattern Recovery: Full MISOCP

Success Rate

- Sample size n vs. Success Rate
- Number of Trials: 20
- Noise Level: 0.50

Average Running Time

- Sample size n vs. Average Running Time
- $p=4$, $p=6$, $p=8$, $p=10$
Convexity Pattern Recovery: MISOCP with Backfitting

Success Rate

- Number of Trials: 20
- Noise Level: 0.50

Average Running Time

- Number of Trials: 20
- Noise Level: 0.50
Convexity Pattern Recovery: Lasso

Success Rate

Average Running Time

Number of Trials: 20

Noise Level: 0.50

YJ Choe
Additive Models with Sparse Convexity Patterns

Ceria, S.
Lift-and-project cuts: An efficient solution method for mixed integer programs.
References II

Mixed integer second order cone programming.
Verlag Dr. Hut.

Julian Faraway (2014)
faraway: Functions and datasets for books by Julian Faraway.
R package version 1.0.6.
http://CRAN.R-project.org/package=faraway

Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64(5), 275-278.
References III

References IV

MOSEK
Rmosek: The R to MOSEK optimization interface.
R package version 7.0.5. http://rmosek.r-forge.r-project.org/,
http://www.mosek.com/

R Core Team (2014).
R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/.

Sparse additive models.
References V

Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ^1-constrained quadratic programming (Lasso).

Thank You!